Si además quieres enviarnos un Artículo para el Blog y redes sociales, pulsa el siguiente botón:
Buenas, UCfort y yo hace tiempo que trabajamos en un proyecto que queremos compartir con todos vosotros.
Se trata de un sistema de placa entrenadora y adaptadores de diferentes micros para poder probar esos microcontroladores de diferentes fabricantes, a diferentes voltajes (5V y 3,3V de momento). Adjunto los originales de la última versión de la placa, además de con los adaptadores de algunos micros y unas fotos de uno de los prototipos (el último que hicimos) ya funcionando perfectamente.
¿A quien no le gustaría tener una o varias placas entrenadoras tan completas como las de mikroElectronica? Pero por tamaño y precio no era lo que queríamos. Además suelen ser específicas de un fabricante (y/o modelos). Con todo eso en mente, os expongo las ideas básicas que nos llevaron a hacer esta placa:
1) Necesitabamos una placa para probar diferentes microcontroladores. Muchos de ellos son de Microchip, pero no siempre. Algunos necesitan una alimentación a 5V y otros a 3,3V.
2) Nos fijamos como límite de tamaño una placa comercial de 10x15 cm, positiva, a una sola cara. Solemos trabajar con ese tamaño, ya que es fácil encontrarlo en cualquier tienda de electrónica. No queríamos que fuera de doble cara para que resulte más senzillo de fabricar a la gente no muy experta.
3) Limitamos el número máximo de pines del micro a 64 pines.
4) La placa tenía que tener los componentes mínimos necesarios para probar las funciones básicas de un micro y que nosotros (hobistas de la robótica) utilizamos, pero sin elementos opcionales que encarezcan o compliquen la placa.
5) Constaría de dos partes: la entrenadora y el módulo adaptador del microcontrolador. De esta forma el micro es independiente de la entrenadora y se puede usar cualquiera siempre que cumpla las especificaciones de la entrenadora y a través de un módulo adaptador.
6) Los pines de programación/debuger irían siempre en el zócalo adaptador, nunca en la entrenadora.
7) Debía ser una placa de fácil construcción y económica. Se utilizarían componentes thru-hole o smd fáciles de obtener y soldar.
Con estas premisas, y después de numerosos rediseños y modificaciones, hemos llegado a algo así:
* Vista superior con un módulo de dspic30F4011 pinchado:
* Misma vista superior sin flash (sale algo borrosa):
* Vista inferior sin ningún módulo. Se observan los reguladores de voltage, el interrutor on/off y el potenciómetro para regular el brillo del display:
Características del sistema entrenadora multi-microcontrolador:
* Zona de prototipado con dos mini-breadboard pegadas a la placa. Disponibles connectores hembra de Tensión de alimentación, 5V, 3,3V y GND. Está pensada para utilizarse con cablecillos macho-macho.
* Connector alimentación tipo Jack y espadin normal (para conectar directamente una LiPo pequeña, por ejemplo).
* Interruptor de encendido/apagado.
* Display lcd de 8x2. Como el que monta el robot 3pi de pololu, también disponible por ebay. Por falta de tiempo es el único componente que no hemos comprobado que funcione correctamente, espero que lo haga!!
* 9 pulsadores. La alimentación se puede elegir por medio del conector hembra.
* Zócalo para driver tipo MCP19E4 o similar. Este dirver mosfet (se puede pedir gratuitamente como sample a Microchip) se puede usar directamente para controlar motores como los pololu HP utilizados en los robots velocistas o para atacar cargas que necesiten más potencia (relés, mosfets, por ejemplo).
* Dip-Switch de 4 pines. La alimentación se puede elegir por medio del conector hembra.
* Dos potenciómetros, para simular entradas analógicas. La alimentación se puede elegir por medio del conector hembra.
* Un zumbador piezoeléctrico. Funciona directamente conectandole la salida de un pin del micro.
* Ocho leds de 3mm.
* Un led RGB.
* Un zócalo hembra de 2x2 pines con un led para probar directamente los sensores cny70. Con una plaquita adaptadora se podría utilizar para probar otros sensores similares pero en encapsulado smd.
Funcionamiento de la placa:
2) En el zócalo se elige, con un jumper, el voltage que utilizará el micro (5V o 3,3V).
3) Se conecta la alimentación a la entrenadora.
4) Se enciendo con el interruptor.
5) Se conectan los cablecillos macho-macho a los diferentes elementos de prueba (protoboard, interruptores, leds, etc).
Nota) La placa no necesita el módulo del micro para funcionar. Se puede usar para probar componentes, sensores, etc sin necesidad de tener ningún micro insertado.
Justificación del formato del conector del zócalo adaptador: 2x30 pines en un solo lado.
Y aquí dejo los ficheros comprimidos en rar para quien los quiera revisar/probar, todos en formato Eagle (placa+esquemático. No se si se abren con la versión sin registrar...):
Entrenadora: https://dl.dropbox.com/u/14855888/Entrenadora/entrenadora.rar
Adaptador dspic30-smd-44 pines: https://dl.dropbox.com/u/14855888/Entrenadora/adaptador44_dspic30F.rar
Adaptador pic16F877-th-40 pines: https://dl.dropbox.com/u/14855888/Entrenadora/adaptador40_16F877.rar
Adaptador dspic30F4013-th-40 pines: https://dl.dropbox.com/u/14855888/Entrenadora/adaptador40_30F4013.rar
Adaptador propeller-40 pines: https://dl.dropbox.com/u/14855888/Entrenadora/adaptador40_Propeller.rar
Adaptador dspic33ep256mu806-64 pines: https://dl.dropbox.com/u/14855888/Entrenadora/adaptador28_33EP64MC502.rar
Adaptador atmel-at90-8515-40 pines: https://dl.dropbox.com/u/14855888/Entrenadora/adaptador40_AT90-8515.rar
Adaptador atmel-at90-8535-40 pines: https://dl.dropbox.com/u/14855888/Entrenadora/adaptador40_AT90-8535.rar
Cambios/mejoras/actualizaciones previstas a corto plazo:
1) Esta versión está específicamente pensada para hacerse la placa uno mismo en casa y a una sola cara. Tenemos previsto hacer un modelo para enviar a producir profesionalmente, tanto de entrenadora como de adaptadores, ya sea en iteadstudio o en cualquier otro fabricante económico de placas. Hay que cambiar todo el ruteado de pistas y vías, cambiar algunos componentes thru-hole por smd, puede que resituar alguno, preparar la serigrafía, etc.
2) En la parte central queda espacio vacío (aunque está bien que donde irá "la maraña" de cables esté despejada) que quizá se podría aprovechar para poner algún componente más. Zócalo X-bee quizás? Display 7 segmentos (con driver? sin driver? cuantos dígitos?)
3) Otra idea es añadir un conector usb (normal?, mini?, micro?) para alimentar la placa por si se usa con un ordenador y no se tiene fuente de alimentación a mano.
4) Hacer adaptadores para otros micros. Hay muchos pendientes, en diversos tamaños, encapsulados y fabricantes. Incluso se podrían hacer adaptadores para pinchar directamente arduino nano, mbed, microstick, etc, etc.
5) Donde va el conector de 2x30 de los pines del micro hacia la zona de componentes (no el de la izquierda donde se pincha el zócalo adaptador, sinó el que está al lado, pero un poco más a la derecha) hay espacio para poner una plantilla de papel con los nombres de cada pin que usa ese micro con ese zócalo en concreto. No se si esto queda muy claro, cuando tenga tiempo de hacer una, le hago una foto y la subo también.
6) Quizá añadir otro/s regulador/es de voltage para abarcar a micros de bajo voltaje?
Nos gustaría recibir vuestros comentarios, críticas, sugerencias, etc. El ánimo de este proyecto es que sea open source hardware (cc-by-sa). Que cualquiera pueda fabricarse las placas en casa o pedirlas a un fabricante. Que se pueda usar en casa o en colegios/institutos para hacer prácticas.
Como véis aun quedan muchas cosas por pulir, mejorar y hacer. Si alguno se anima a participar/ayudar, nosotros estaríamos encantados.
Después de un tiempo trabajando con las versiones previas de la entrenadora, ahora con la versión inicial y de escuchar las críticas y sugerencias de algunos compañeros, aquí va la que será la versión 2.0 (y espero que definitiva por un tiempo):
* Se ha reducido el número máximo de pines de los micros a 64. Para usar micros de 80 o 100 se puede seguir usando la versión anterior.
* Se ha reducido el número de pulsadores de 8 a 4.
* Se ha añadido un driver MCP14E4 que aporta dos salidas para controlar mosfets, relés, leds grandes, motores pequeños, etc.
* Se han redistribuido todos los componentes en general, logrando así un mayor aprovechamiento del espacio útil de la placa. De esta forma ahora cabe la protoboard anterior sin tener que quitarle las dos tiras laterales.
En breve haré el pedido a IteadStudio.
Una ultima sugerencia, intenta evitar el electrolítico por la parte de abajo ya que te va a levantar mucho la pcb, quizás sería mejor usar uno thru-hole y ponerlo por arriba.
S2
Ranganok Schahzaman
Gracias por la sugerencia. Aunque en la parte de arriba lo quiero despejado, que se vean solo los componentes que se usan directamente, de ese modo queda una placa más limpia y cuidada. Ese condensador es grande, pero será en el caso extremo que haga falta usar uno tan grande, si no se precisa no hace falta soldarlo o se suelda uno más pequeño. Además, para levantar la placa, uso unas patitas de 15mm, por lo que no hay problemas que toque abajo.
La adaptadora de AVR en 1206, en el 3D que ha hecho dragonet no sale pero lleva plano de tierra por las dos caras la placa, un plano de tierra único, no he separado el analógico, cristal y el del usb (el encapsulado lo he dejado sin conectar a tierra en la placa del micro).
Es un micro con usb (ATmega16/32u4) que viene con bootloader de fábrica, por lo que se puede usar sin programador externo (se programa directamente por el usb después de soldar) reduciendo el coste del que quiera ponerse con la adaptadora/entrenadora, además todas las herramientas para su programación las da Atmel de manera gratuita.
También sería la placa compatible con Arduino Leonardo (si no me he dejado nada, ya que los Arduino no los uso) por lo que se podría programar desde el entorno de Arduino con sus librerías, y hacer el conector con los pines de Arduino o con los de AVR.
He mandado a hacer los pcbs a Itead, 10 pcbs (máximo 5 cm x 5 cm) salen por 10 euros con gastos de envio incluidos, si alguien ve algún error o que falte algo agradezco si nos lo dice, ya que así se vuelve a pedir y ganamos las dos o tres semanas que tardan los de Itead.
Las resistencias no tienen valor en el 3D, la resistencia del USB que sale de 0 ohm es un ptc, aunque también se puede dejar sin soldar y alimentar desde los 5V de la entrenadora si se quiere prevenir de jumpers a 3.3 o 1.8V puestos por error en la entrenadora, o dejarlo y alimentar la entrenadora a 5V desde el usb colocando el jumper de selección en 5V.
Gracias.
S2
He puesto un enlace en nuestro blog describiendo el proyecto: http://webdelcire.com/wordpress/archives/3340 " onclick="window.open(this.href);return false;
A ver si alguien más se anima a participar en su diseño.
S2